84 research outputs found

    An Autoreactive Antibody from an SLE/HIV-1 Individual Broadly Neutralizes HIV-1

    Get PDF
    Broadly HIV-1–neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1–infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1–infected individual with SLE who exhibited controlled viral load (\u3c5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient’s plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells

    Structural survey of HIV-1-neutralizing antibodies targeting Env trimer delineates epitope categories and suggests vaccine templates

    Get PDF
    HIV-1 broadly neutralizing antibodies are desired for their therapeutic potential and as templates for vaccine design. Such antibodies target the HIV-1-envelope (Env) trimer, which is shielded from immune recognition by extraordinary glycosylation and sequence variability. Recognition by broadly neutralizing antibodies thus provides insight into how antibody can bypass these immune-evasion mechanisms. Remarkably, antibodies neutralizing >25% of HIV-1 strains have now been identified that recognize all major exposed surfaces of the prefusion-closed Env trimer. Here we analyzed all 206 broadly neutralizing antibody-HIV-1 Env complexes in the PDB with resolution suitable to define their interaction chemistries. These segregated into 20 antibody classes based on ontogeny and recognition, and into 6 epitope categories (V1V2, glycan-V3, CD4-binding site, silent face center, fusion peptide, and subunit interface) based on recognized Env residues. We measured antibody neutralization on a 208-isolate panel and analyzed features of paratope and B cell ontogeny. The number of protruding loops, CDR H3 length, and level of somatic hypermutation for broadly HIV-1 neutralizing antibodies were significantly higher than for a comparison set of non-HIV-1 antibodies. For epitope, the number of independent sequence segments was higher (P < 0.0001), as well as the glycan component surface area (P = 0.0005). Based on B cell ontogeny, paratope, and breadth, the CD4-binding site antibody IOMA appeared to be a promising candidate for lineage-based vaccine design. In terms of epitope-based vaccine design, antibody VRC34.01 had few epitope segments, low epitope-glycan content, and high epitope-conformational variability, which may explain why VRC34.01-based design is yielding promising vaccine results

    Structural survey of HIV-1-neutralizing antibodies targeting Env trimer delineates epitope categories and suggests vaccine templates

    Get PDF
    HIV-1 broadly neutralizing antibodies are desired for their therapeutic potential and as templates for vaccine design. Such antibodies target the HIV-1-envelope (Env) trimer, which is shielded from immune recognition by extraordinary glycosylation and sequence variability. Recognition by broadly neutralizing antibodies thus provides insight into how antibody can bypass these immune-evasion mechanisms. Remarkably, antibodies neutralizing >25% of HIV-1 strains have now been identified that recognize all major exposed surfaces of the prefusion-closed Env trimer. Here we analyzed all 206 broadly neutralizing antibody-HIV-1 Env complexes in the PDB with resolution suitable to define their interaction chemistries. These segregated into 20 antibody classes based on ontogeny and recognition, and into 6 epitope categories (V1V2, glycan-V3, CD4-binding site, silent face center, fusion peptide, and subunit interface) based on recognized Env residues. We measured antibody neutralization on a 208-isolate panel and analyzed features of paratope and B cell ontogeny. The number of protruding loops, CDR H3 length, and level of somatic hypermutation for broadly HIV-1 neutralizing antibodies were significantly higher than for a comparison set of non-HIV-1 antibodies. For epitope, the number of independent sequence segments was higher (P < 0.0001), as well as the glycan component surface area (P = 0.0005). Based on B cell ontogeny, paratope, and breadth, the CD4-binding site antibody IOMA appeared to be a promising candidate for lineage-based vaccine design. In terms of epitope-based vaccine design, antibody VRC34.01 had few epitope segments, low epitope-glycan content, and high epitope-conformational variability, which may explain why VRC34.01-based design is yielding promising vaccine results

    Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies

    Get PDF
    A preventive HIV-1 vaccine should induce HIV-1–specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs

    Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization.

    Get PDF
    Serum characterization and antibody isolation are transforming our understanding of the humoral immune response to viral infection. Here, we show that epitope specificities of HIV-1–neutralizing antibodies in serum can be elucidated from the serum pattern of neutralization against a diverse panel of HIV-1 isolates. We determined “neutralization fingerprints” for 30 neutralizing antibodies on a panel of 34 diverse HIV-1 strains and showed that similarity in neutralization fingerprint correlated with similarity in epitope. We used these fingerprints to delineate specificities of polyclonal sera from 24 HIV-1–infected donors and a chimeric siman-human immunodeficiency virus–infected macaque. Delineated specificities matched published specificities and were further confirmed by antibody isolation for two sera. Patterns of virus-isolate neutralization can thus afford a detailed epitope-specific understanding of neutralizing-antibody responses to viral infection

    Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors

    Get PDF
    The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures –8 determined here– of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies
    • …
    corecore